Sunday, 1 January 2012

Chemistry and concepts

Theory

Laboratory, Institute of Biochemistry, University of Cologne.
Traditional chemistry starts with the study of elementary particles, atoms, molecules,[8] substances, metals, crystals and other aggregates of matter. in solid, liquid, and gas states, whether in isolation or combination. The interactions, reactions and transformations that are studied in chemistry are a result of interaction either between different chemical substances or between matter and energy. Such behaviors are studied in a chemistry laboratory using various forms of laboratory glassware.
A chemical reaction is a transformation of some substances into one or more other substances.[9] It can be symbolically depicted through a chemical equation. The number of atoms on the left and the right in the equation for a chemical transformation is most often equal. The nature of chemical reactions a substance may undergo and the energy changes that may accompany it are constrained by certain basic rules, known as chemical laws.
Energy and entropy considerations are invariably important in almost all chemical studies. Chemical substances are classified in terms of their structure, phase as well as their chemical compositions. They can be analyzed using the tools of chemical analysis, e.g. spectroscopy and chromatography. Scientists engaged in chemical research are known as chemists.[10] Most chemists specialize in one or more sub-disciplines.

History

Ancient Egyptians pioneered the art of synthetic "wet" chemistry up to 4,000 years ago.[11] By 1000 BC ancient civilizations were using technologies that formed the basis of the various branches of chemistry such as; extracting metal from their ores, making pottery and glazes, fermenting beer and wine, making pigments for cosmetics and painting, extracting chemicals from plants for medicine and perfume, making cheese, dying cloth, tanning leather, rendering fat into soap, making glass, and making alloys like bronze.
Democritus' atomist philosophy was later adopted by Epicurus (341–270 BCE).
The genesis of chemistry can be traced to the widely observed phenomenon of burning that led to metallurgy—the art and science of processing ores to get metals (e.g. metallurgy in ancient India). The greed for gold led to the discovery of the process for its purification, even though the underlying principles were not well understood—it was thought to be a transformation rather than purification. Many scholars in those days thought it reasonable to believe that there exist means for transforming cheaper (base) metals into gold. This gave way to alchemy and the search for the Philosopher's Stone which was believed to bring about such a transformation by mere touch.[12]
Greek atomism dates back to 440 BC, as what might be indicated by the book De Rerum Natura (The Nature of Things)[13] written by the Roman Lucretius in 50 BC.[14] Much of the early development of purification methods is described by Pliny the Elder in his Naturalis Historia.
A tentative outline is as follows:
  1. Egyptian alchemy [3,000 BCE – 400 BCE], formulate early "element" theories such as the Ogdoad.
  2. Greek alchemy [332 BCE – 642 CE], the Macedonian king Alexander the Great conquers Egypt and founds Alexandria, having the world's largest library, where scholars and wise men gather to study.
  3. Islamic alchemy [642 CE – 1200], the Muslim conquest of Egypt; development of alchemy by Jābir ibn Hayyān, al-Razi and others; Jābir modifies Aristotle's theories; advances in processes and apparatus.[15]
  4. European alchemy [1300 – present], Pseudo-Geber builds on Arabic chemistry.[citation needed] From the 12th century, major advances in the chemical arts shifted from Arab lands to western Europe.[15]
  5. Chemistry [1661], Boyle writes his classic chemistry text The Sceptical Chymist.
  6. Chemistry [1787], Lavoisier writes his classic Elements of Chemistry.
  7. Chemistry [1803], Dalton publishes his Atomic Theory.
  8. Chemistry [1869], Dmitri Mendeleev presented his Periodic table being the framework of the modern chemistry
The earliest pioneers of Chemistry, and inventors of the modern scientific method,[16] were medieval Arab and Persian scholars. They introduced precise observation and controlled experimentation into the field and discovered numerous Chemical substances.[17][verification needed]
"Chemistry as a science was almost created by the Muslims; for in this field, where the Greeks (so far as we know) were confined to industrial experience and vague hypothesis, the Saracens introduced precise observation, controlled experiment, and careful records. They invented and named the alembic (al-anbiq), chemically analyzed innumerable substances, composed lapidaries, distinguished alkalis and acids, investigated their affinities, studied and manufactured hundreds of drugs. Alchemy, which the Muslims inherited from Egypt, contributed to chemistry by a thousand incidental discoveries, and by its method, which was the most scientific of all medieval operations."
[17]
The most influential Muslim chemists were Jābir ibn Hayyān (Geber, d. 815), al-Kindi (d. 873), al-Razi (d. 925), al-Biruni (d. 1048) and Alhazen (d. 1039).[18] The works of Jābir became more widely known in Europe through Latin translations by a pseudo-Geber in 14th century Spain, who also wrote some of his own books under the pen name "Geber". The contribution of Indian alchemists and metallurgists in the development of chemistry was also quite significant.[19]
The emergence of chemistry in Europe was primarily due to the recurrent incidence of the plague and blights there during the so called Dark Ages.[citation needed] This gave rise to a need for medicines. It was thought that there exists a universal medicine called the Elixir of Life that can cure all diseases[citation needed], but like the Philosopher's Stone, it was never found.
Antoine-Laurent de Lavoisier is considered the "Father of Modern Chemistry".[20]
For some practitioners, alchemy was an intellectual pursuit, over time, they got better at it. Paracelsus (1493–1541), for example, rejected the 4-elemental theory and with only a vague understanding of his chemicals and medicines, formed a hybrid of alchemy and science in what was to be called iatrochemistry. Similarly, the influences of philosophers such as Sir Francis Bacon (1561–1626) and René Descartes (1596–1650), who demanded more rigor in mathematics and in removing bias from scientific observations, led to a scientific revolution. In chemistry, this began with Robert Boyle (1627–1691), who came up with an equation known as Boyle's Law about the characteristics of gaseous state.[21]
Chemistry indeed came of age when Antoine Lavoisier (1743–1794), developed the theory of Conservation of mass in 1783; and the development of the Atomic Theory by John Dalton around 1800. The Law of Conservation of Mass resulted in the reformulation of chemistry based on this law[citation needed] and the oxygen theory of combustion, which was largely based on the work of Lavoisier. Lavoisier's fundamental contributions to chemistry were a result of a conscious effort[citation needed] to fit all experiments into the framework of a single theory.
Lavoisier established the consistent use of the chemical balance, used oxygen to overthrow the phlogiston theory, and developed a new system of chemical nomenclature and made contribution to the modern metric system. Lavoisier also worked to translate the archaic and technical language of chemistry into something that could be easily understood by the largely uneducated masses, leading to an increased public interest in chemistry. All these advances in chemistry led to what is usually called the chemical revolution. The contributions of Lavoisier led to what is now called modern chemistry—the chemistry that is studied in educational institutions all over the world. It is because of these and other contributions that Antoine Lavoisier is often celebrated as the "Father of Modern Chemistry".[22] The later discovery of Friedrich Wöhler that many natural substances, organic compounds, can indeed be synthesized in a chemistry laboratory also helped the modern chemistry to mature from its infancy.[23]
The discovery of the chemical elements has a long history from the days of alchemy and culminating in the discovery of the periodic table of the chemical elements by Dmitri Mendeleev (1834–1907)[24] and later discoveries of some synthetic elements.

Etymology

The word chemistry comes from the word alchemy, an earlier set of practices that encompassed elements of chemistry, metallurgy, philosophy, astrology, astronomy, mysticism and medicine; it is commonly thought of as the quest to turn lead or another common starting material into gold.[25] The word alchemy in turn is derived from the Arabic word al-kīmīā (الكيمياء), meaning alchemy. The Arabic term is borrowed from the Greek χημία or χημεία.[26][27] This may have Egyptian origins. Many believe that al-kīmīā is derived from χημία, which is in turn derived from the word Chemi or Kimi, which is the ancient name of Egypt in Egyptian.[26] Alternately, al-kīmīā may be derived from χημεία, meaning "cast together".[28]
An alchemist was called a 'chemist' in popular speech, and later the suffix "-ry" was added to this to describe the art of the chemist as "chemistry".

Definitions

In retrospect, the definition of chemistry has changed over time, as new discoveries and theories add to the functionality of the science. Shown below are some of the standard definitions used by various noted chemists:
  • Alchemy (330) – the study of the composition of waters, movement, growth, embodying, disembodying, drawing the spirits from bodies and bonding the spirits within bodies (Zosimos).[29]
  • Chymistry (1661) – the subject of the material principles of mixed bodies (Boyle).[30]
  • Chymistry (1663) – a scientific art, by which one learns to dissolve bodies, and draw from them the different substances on their composition, and how to unite them again, and exalt them to a higher perfection (Glaser).[31]
  • Chemistry (1730) – the art of resolving mixed, compound, or aggregate bodies into their principles; and of composing such bodies from those principles (Stahl).[32]
  • Chemistry (1837) – the science concerned with the laws and effects of molecular forces (Dumas).[33]
  • Chemistry (1947) – the science of substances: their structure, their properties, and the reactions that change them into other substances (Pauling).[34]
  • Chemistry (1998) – the study of matter and the changes it undergoes (Chang).[35]

Basic concepts

Several concepts are essential for the study of chemistry; some of them are:[36]

Atom

An atom is the basic unit of chemistry. It consists of a positively charged core (the atomic nucleus) which contains protons and neutrons, and which maintains a number of electrons to balance the positive charge in the nucleus. The atom is also the smallest entity that can be envisaged to retain the chemical properties of the element, such as electronegativity, ionization potential, preferred oxidation state(s), coordination number, and preferred types of bonds to form (e.g., metallic, ionic, covalent).

Element

The concept of chemical element is related to that of chemical substance. A chemical element is specifically a substance which is composed of a single type of atom. A chemical element is characterized by a particular number of protons in the nuclei of its atoms. This number is known as the atomic number of the element. For example, all atoms with 6 protons in their nuclei are atoms of the chemical element carbon, and all atoms with 92 protons in their nuclei are atoms of the element uranium.
Although all the nuclei of all atoms belonging to one element will have the same number of protons, they may not necessarily have the same number of neutrons; such atoms are termed isotopes. In fact several isotopes of an element may exist. Ninety–four different chemical elements or types of atoms based on the number of protons are observed on earth naturally, having at least one isotope that is stable or has a very long half-life. A further 18 elements have been recognised by IUPAC after they have been made in the laboratory.
The standard presentation of the chemical elements is in the periodic table, which orders elements by atomic number and groups them by electron configuration. Due to its arrangement, groups, or columns, and periods, or rows, of elements in the table either share several chemical properties, or follow a certain trend in characteristics such as atomic radius, electronegativity, etc. Lists of the elements by name, by symbol, and by atomic number are also available.

Compound

A compound is a substance with a particular ratio of atoms of particular chemical elements which determines its composition, and a particular organization which determines chemical properties. For example, water is a compound containing hydrogen and oxygen in the ratio of two to one, with the oxygen atom between the two hydrogen atoms, and an angle of 104.5° between them. Compounds are formed and interconverted by chemical reactions.

Substance

A chemical substance is a kind of matter with a definite composition and set of properties.[37] Strictly speaking, a mixture of compounds, elements or compounds and elements is not a chemical substance, but it may be called a chemical. Most of the substances we encounter in our daily life are some kind of mixture; for example: air, alloys, biomass, etc.
Nomenclature of substances is a critical part of the language of chemistry. Generally it refers to a system for naming chemical compounds. Earlier in the history of chemistry substances were given name by their discoverer, which often led to some confusion and difficulty. However, today the IUPAC system of chemical nomenclature allows chemists to specify by name specific compounds amongst the vast variety of possible chemicals.
The standard nomenclature of chemical substances is set by the International Union of Pure and Applied Chemistry (IUPAC). There are well-defined systems in place for naming chemical species. Organic compounds are named according to the organic nomenclature system.[38] Inorganic compounds are named according to the inorganic nomenclature system.[39] In addition the Chemical Abstracts Service has devised a method to index chemical substance. In this scheme each chemical substance is identifiable by a number known as CAS registry number.

Molecule

A molecule is the smallest indivisible portion of a pure chemical substance that has its unique set of chemical properties, that is, its potential to undergo a certain set of chemical reactions with other substances. However, this definition only works well for substances that are composed of molecules, which is not true of many substances (see below). Molecules are typically a set of atoms bound together by covalent bonds, such that the structure is electrically neutral and all valence electrons are paired with other electrons either in bonds or in lone pairs.
Thus, molecules exist as electrically neutral units, unlike ions. When this rule is broken, giving the "molecule" a charge, the result is sometimes named a molecular ion or a polyatomic ion. However, the discrete and separate nature of the molecular concept usually requires that molecular ions be present only in well-separated form, such as a directed beam in a vacuum in a mass spectrograph. Charged polyatomic collections residing in solids (for example, common sulfate or nitrate ions) are generally not considered "molecules" in chemistry.
A molecular structure depicts the bonds and relative positions of atoms in a molecule such as that in Paclitaxel shown here
The "inert" or noble chemical elements (helium, neon, argon, krypton, xenon and radon) are composed of lone atoms as their smallest discrete unit, but the other isolated chemical elements consist of either molecules or networks of atoms bonded to each other in some way. Identifiable molecules compose familiar substances such as water, air, and many organic compounds like alcohol, sugar, gasoline, and the various pharmaceuticals.
However, not all substances or chemical compounds consist of discrete molecules, and indeed most of the solid substances that makes up the solid crust, mantle, and core of the Earth are chemical compounds without molecules. These other types of substances, such as ionic compounds and network solids, are organized in such a way as to lack the existence of identifiable molecules per se. Instead, these substances are discussed in terms of formula units or unit cells as the smallest repeating structure within the substance. Examples of such substances are mineral salts (such as table salt), solids like carbon and diamond, metals, and familiar silica and silicate minerals such as quartz and granite.
One of the main characteristic of a molecule is its geometry often called its structure. While the structure of diatomic, triatomic or tetra atomic molecules may be trivial, (linear, angular pyramidal etc.) the structure of polyatomic molecules, that are constituted of more than six atoms (of several elements) can be crucial for its chemical nature.

No comments:

Post a Comment